

PRODUCT SPECIFICATION

16*2 Characters COB LCD MODULE MODEL: LT-1602F2-291 Ver:1.0

< \diamond > Finally Specification

	CUSTOMER'S APPROVAL				
CUSTOMER :					
SIG	NATURE:	DATE:			

APPROVED	PM	PD	PREPARED
BY	REVIEWD	REVIEWD	Ву

Prepared By: LEADER TIME SRL VIA MONS. PROSDOCIMI, 27 36042 BREGANZE (VI)

• This specification is subject to change without notice. Please contact LT or its representative before designing your product based on this specification.

			D	oc. No.:
		Revi	sion Status	
Version	Revise Date	Page	Content	Modified By
VER 1.0	2013.02.23		First Issued	

Table of Contents

_ _

No. Contents	Page
1. FEATURES	4
2. MECHANICAL SPECIFICATIONS	4
3. ELECTRICAL SPECIFICATIONS	4
4. TERMINAL FUNCTIONS AND BLOCK DIAGRAM	6
5. TIMING CHARACTERISTICS	7
6. COMMAND LIST	8
7. CHARACTER GENERATOR ROM	9
8. QUALITY SPECIFICATIONS	10
9. RELIABILITY	15
10. HANDLING PRECAUTION	16
11. OUTLINE DIMENSION	17

Issued Date:2013.02.23	
Doc. No.:	

1. Features

The features of LCD are showed as follows

- * Display mode : STN/ Yellow-Green/Transflective/Positive
- * Controller IC : SPLC780D1_001(English & Japanese)
- * Display format : 16X2 Characters
- * Interface Input Data : 4bit or 8 bit MPU
- * Driving Method : 1/16Duty, 1/5Bias
- * Viewing Direction : 6 O'clock
- * Backlight : LED /Yellow-Green

:

*Sample NO.

2. MECHANICAL SPECIFICATIONS

ltem	Specification	Unit
Module Size	80(W) x36(H) x9.5(D)	mm
Viewing Area	64.5(W) x 16(H)	mm
Activity Display Area	56.21(W)x11.50(H)	mm
Character Font	5x8 Dots	-
Character Size	2.96(W)x5.56(H)	mm
Character Pitch	3.55(W)x5.94(H)	mm
Dot Size	0.56(W)x0.66(H)	mm

3. ELECTRICAL SPECIFICATIONS

3-1 ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

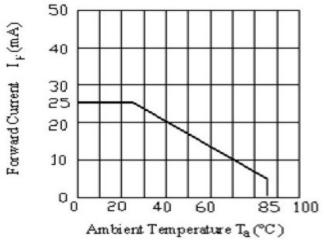
Item	Symbol	Min	Max	Unit
Supply Voltage For Logic	VDD 0.3		7	V
Supply Voltage For LCD Drive	V _{LCD}	Vdd-10	VDD+0.3	V
Input Voltage	Vin	-0.3	VDD+0.3	V
Operating Temp.	Тор	-20	+70	°C
Storage Temp.	Tst	-30	+80	°C

*. NOTE: The response time will be extremely slow when the operating temperature is around -10 $^{\circ}$ C, and the back ground will become darker at high temperature operating.

3-2 ELECTICAL CHARACTERISTICS

ltem		Symbol	Test Condition	Min.	Тур.	Max.	Unit
Logic supply Voltage		Vdd – Vss		4.5	5	5.5	V
LCD Dri	LCD Drive		Ta = 25 °C	4.2	4.5	4.8	V
Input Voltage	"H" Level	V _{IH}		2.2	-	Vdd	V
	"L" Level V_{IL} $V_{DD}=5V \pm 5\%$		-0.3	-	0.6	V	
Frame Frequency		f _{FLM}		-	84.4	-	Hz
Current Cons	umption	I _{DD}		-	1.7	-	mA

3-3 BACKLIGHT

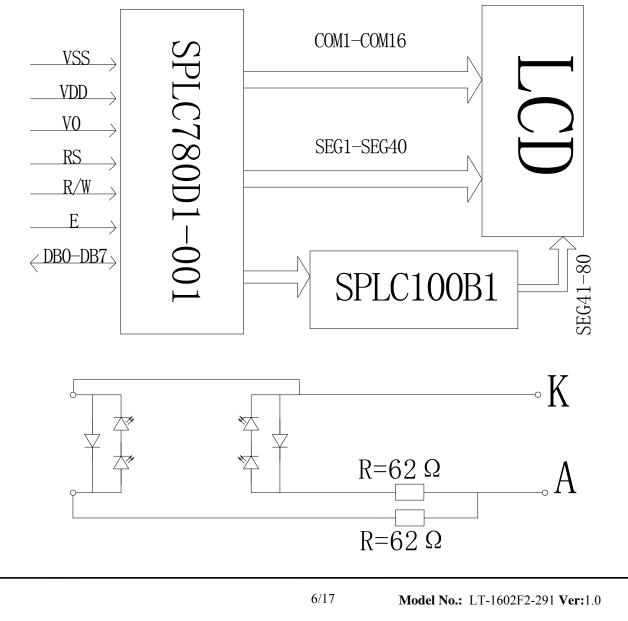

3-3-1. Absolute Maximum Ratings

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Current	IF		-	30	-	mA
Reverse Voltage	VR	Ta = 25 °C	-	-	10	V
Power Dissipation	PD		-	-	135	mW

3-3-2. Electrical-optical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward	IF	Vf=4.2V	-	30	-	mA
Average Luminous Intensity	lv	Ta = 25 °C	30	-	-	cd/m ²
Peak Wave length	λр		576	572	577	nm

The brightness is measured without LCD panel

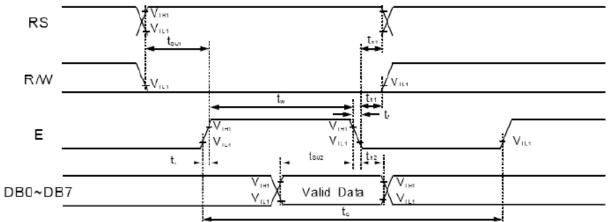

For operation above 25 °C,The lfm & Pd must be derated , the current derating is -0.36mA/ °C for DC drive and -0.86mA/ °C for Pulse drive ,the Power dissipation is -0.75mW/ °C.The product working current must not more than the 60% of the lfm or lfp according to the working temperature.

4. TERMINAL FUNCTIONS AND BLOCK DIAGRAM

4-1 INTERFACE PIN FUNCTION DESCRIPTION

PIN NO.	SYMBOL	FUNCIONS
1	VSS	Ground
2	VDD	Supply voltage for logical circuit
3	V0	Supply voltage for LCD driving
4	RS	A signal for selecting registers. 1: Data Register (for read and write) 0: Instruction Register (for write)
5	R/W	A signal for selecting read or write actions.1: Read, 0: Write.
6	E	Enable signal for reading or writing data.
7-14	DB0-DB7	8 Bit Data Bus
15	К	Backlight (-)
16	Α	Backlight (+)(5V)

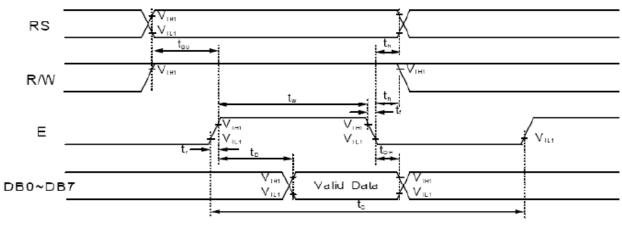
4-2 BLOCK DIAGRAM



5. TIMING CHARACTERISTICS

5 - 1 Write mode

Mode	Characteristic	Symbol	Min.	Тур.	Max.	Unit
Write Mode (Refer to Fig-1)	E Cycle Time	tc	500	-	-	
	E Rise / Fall Time	t _R ,t _F	-	-	20	
	E Pulse Width (High, Low)	tw	230	-	-	
	R/W and RS Setup Time	t _{su1}	40	-	-	ns
	R/W and RS Hold Time	t _{H1}	10	-	-	
	Data Setup Time	t _{su2}	80	-	-	
	Data Hold Time	t _{H2}	10	-	-	

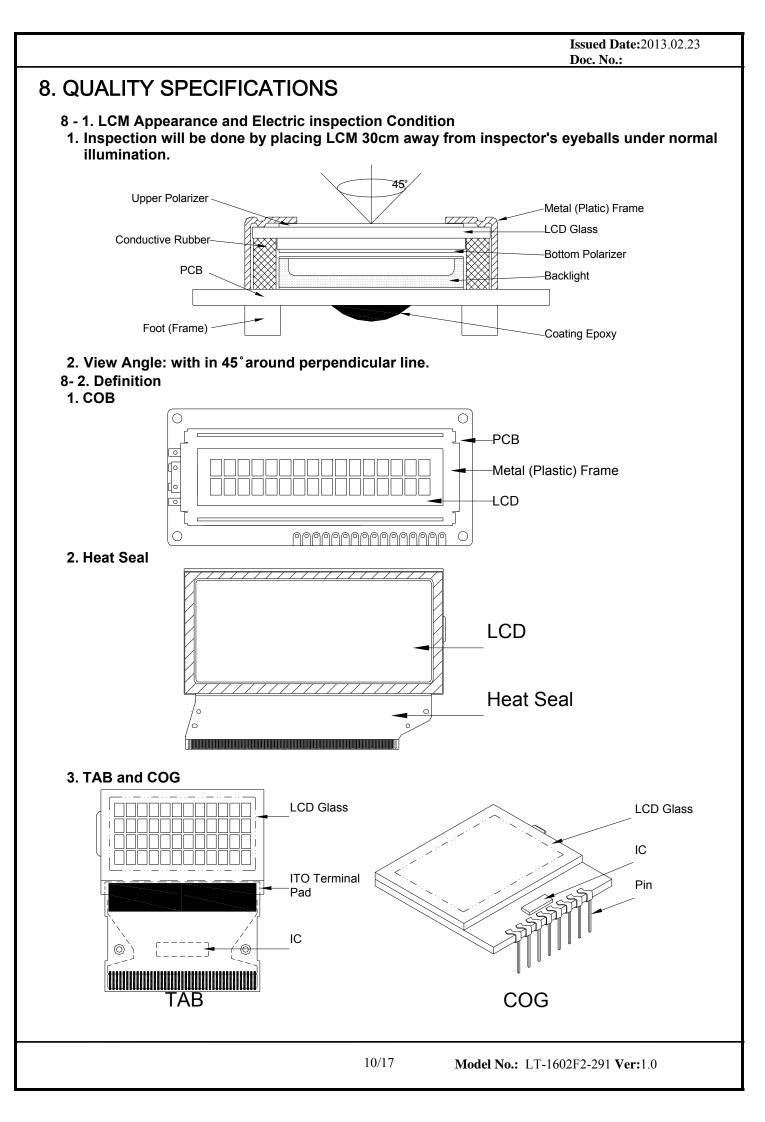

5-2 Write mode timing diagram

5.3 Read mode

Read Mode (Refer to Fig-2)	E Cycle Time	tc	500	-	-	
	E Rise / Fall Time	t _R , t _F	-	-	20	
	E Pulse Width (High, Low)	tw	230	-	-	
	R/W and RS Setup Time	t _{su}	40	-	-	ns
	R/W and RS Hold Time	t _H	10	-	-	
	Data Output Delay Time	t _D	-	-	120	
	Data Hold Time	t _{DH}	5	-	-	

5-4Read mode timimg diagram

6. COMMAND LIST


Instruction		Instruction Code									Description	Execution time (fosc=
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		270 kHz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM and set DDRAM address to '00H" from AC	1.53 ms
Return Home	0	0	0	0	0	0	0	0	1	-	Set DDRAM address to '00H* from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53 ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	ѕн	Assign cursor moving direction and enable the shift of entire display.	39 µs
Display ON/ OFF Control	0	0	0	0	0	0	1	D	с	в	Set display(D), cursor(C), and blinking of cursor(B) on/off control bit.	39 µs
Cursor or Display Shift	0	0	0	0	0	1	s/c	R/L	-	-	Set cursor moving and display shift control bit, and the direction, without changing of DDRAM data.	39 µs
Function Set	0	0	0	0	1	DL	N	F	-	-	Set interface data length (DL: 8-bit/4-bit), numbers of display line (N: 2-line/1-line) and, display font type (F:5×11dots/5×8 dots)	39 µs
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39 µs
Set DDRAM Address	0	o	1	AC6	AC5	AC4	AC3	AC2	AC1	ACO	Set DDRAM address in address counter.	39 µs
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0 µs
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43 µs
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	DO	Read data from internal RAM (DDRAM/CGRAM).	43 µs

* "-": dont care

NOTE: When an MPU program with checking the Busy Flag(DB7) is made, it must be necessary 1/2Fosc is necessary for executing the next instruction by the falling edge of the 'E' signal after the Busy Flag (DB7) goes to "Low".

7. CHARACTER GENERATOR ROM

Upp# 4 awar Bits	00 00	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	11 00	1 101	11 10	1111
xxxx0000	CG RAM (1)			0	<u>a</u>	P	•	F				—	5	Ę	ĊĊ	p
xxxx0001	(2)			1	A	Q	ā	9				7	Ŧ	4	ġ	q
xxxx0010	(3)			2	В	R	b	r				1	Ņ	X	ß	θ
xxxx0011	(4)		#	3	C	5	C	S			┛	ゥ	Ŧ	E	ε	67
xxxx0100	(5)		\$	4	D	T	d	ŧ.			3	I	ŀ	†9	Ч	Ω
xxxx0101	(6)			5	Ε		e	u				7	†	1	G	ü
xxxx0110	(7)		8	6	F	Ų	f	Ų			7	'n			ρ	Σ
xxxx0111	(8)		7	7	G	!,!	9	W			7	Ŧ	7	7	9	π
xxx1000	(1)		ζ	8	Η	Х	h	X			4	2	7	Ņ	. Г	X
xxx1001	(2))	9	Ι	Y	1	у			Ċ	ካ	ļ	լի	-1	Ч
xxxx1010	(3)		ж,		Ţ	Ζ	j	Z			I		i)	V	j	Ŧ
xxx1011	(4)		÷	7	K		k	{			7	ţ	F		X	Ę
xxx1100	(5)		7	<		¥					Þ	Ð	2	7	4	Ħ
xxxx1101	(6)				М		P	}			1	Ζ,		2	Ł	÷
xxx1110	(7)				Ν	•*•	h	→			3	Ð	4	\mathcal{D}	ñ	
xxx1111	(8)		/	?	0		0	÷			ψ	У	Ś	•	Ő	

8-3. Sampling Plan and Acceptance

1.Sampling Plan

MIL - STD - 105E (\parallel) ordinary single inspection is used.

2.Acceptance Major defect: AQL = 0.65% Minor defect: AQL = 1.5%

8-4. Criteria

1.COB

Defect	Inspection Item	Inspection Standards	
Major	PCB copper flakes peeling off	Any copper flake in viewing Area should be greater than 1.0mm ²	Reject
Major	Height of coating epoxy	Exceed the dimension of drawing	Reject
Major	Void or hole of coating epoxy	Expose bonding wire or IC	Reject
Major	PCB cutting defect	Exceed the dimension of drawing	Reject

2. SMT

Defect	Inspection Item	Inspection Standa	ards
Minor	Component marking not readable		Reject
Minor	Component height	Exceed the dimension Of drawing	Reject
Major	Component solder defect (missing , extra, wrong component or wrong orientation		Reject
Minor	Component position shift x component soldering pad x \rightarrow	X < 3/4Z Y > 1/3D	Reject Reject
Minor	Component tilt component D Soldering pad	Y > 1/3D	Reject
Minor	Insufficient solder component θ PAD PCB	<i>θ</i> ≤ 20°	Reject

3. Metal (Plastic) Frame

Defect	Inspection Item	l li	nspection Standa	rds				
Major	Crack / breakage	Any	/where	Reject				
		W	L	Acceptable of Scratch				
		w<0.1mm	Any	Ignore				
		0.1 <u><</u> w<0.2mm	L <u><</u> 5.0mm	2				
Minor	Frame Scratch	0.2 <u><</u> w<0.3mm	L <u><</u> 3.0mm	1				
		w <u>></u> 0.3mm	Any	0				
		Note : 1. Above criteria applicable to scratch lines with distance greater than 5mm. 2. Scratch on the back side of frame (not visible) can be ignored .						
				Acceptable of Dents / Pricks				
		Φ <u><</u>	2					
	Frame Dent , Prick	1.0<	1					
Minor	$\Phi = \frac{L + W}{2}$	1.5	0					
	2	Note : 1. Above criteria applicable to any two dents / pricks with distance greater than 5mm 2. Dent / prick on the back side of frame (not visible) can be ignored						
Minor	Frame Deformation	Excee	d the dimension of	drawing				
Minor	Metal Frame Oxidation		Any rust					

4. Flexible Film Connector (FFC)

Defect	Insp	ection Item	Inspection Standa	rds	
Minor	Tilte	d soldering	Within the angle +5°	Acceptable	
Minor	Uneven s	older joint /bump		Reject	
		Expose the conductive line	Reject		
Minor	Hole	$\Phi = \frac{L + W}{2}$	⊕ > 1.0mm	Reject	
Minor	Minor Position shift	Y > 1/3D	Reject		
WITIO			X > 1/2Z	Reject	

5. Screw

Defect	Inspection Item	Inspection Standards	
Major	Screw missing/loosen		Reject
Minor	Screw oxidation	Any rust	Reject
Minor	Screw deformation	Difficult to accept screw driver	Reject

6. Heatseal 、 TCP 、 FPC

Defect	Inspection Item	Inspection Standards			
Major	Scratch expose conductive layer		Reject		
Minor	HS Hole $\Phi = \frac{L + W}{2}$	⊕> 0.5mm	Reject		
Major	Adhesion strength	Less than the specification	Reject		
Minor	Position shift $\gamma \xrightarrow{-\psi} -\psi$	Y > 1/3D	Reject		
WIITIO		X > 1/2Z	Reject		
Major	Conductive line break		Reject		

7. LED Backing Protective Film and Others

Defect	Inspection Item	Inspection Standards			
		Acceptable number of units			
		⊕ <u><</u> 0.10mm			
		0.10<⊕ <u><</u> 0.15mm	2		
Minor		0.15<⊕ <u><</u> 0.2mm	1		
		⊕>0.2mm	0		
		The distance between any two spots should be <u>></u> 5mm Any spot/dot/void outside of viewing area is acceptable			
Minor	Protective film tilt	Not fully cover LCD Re			
Major	COG coating	Not fully cover ITO circuit	Reject		

8. Electric Inspection

Defect	Inspection Item	Inspection Standards	
Major	Short		Reject
Major	Open		Reject

9. Inspection Specification of LCD

Defect	Insp	ect Item			Ins	spectior	n St	andards	;	
		* Glass Scratch	W		W <u><</u>	0.03	0.0	0.05 <u><</u> 0.0	5 V	V>0.05
		* Polarizer Scratch	L		L	<5		L<3		Any
Minor	Linear Defect	* Fiber and Linear	ACC. NO.	1		1 F		Reject		
		material	Note	L is the length and W is the				e width of	the de	fect
		* Foreign material	Φ	Φ <u><</u> (0.1	0.1<⊕ <u><</u> 0).15 ().15<⊕ <u><</u> 0	.2	⊕>0.2
	Black Spot and	between glass and polarizer or glass	ACC.	3EA 100n	A / nm²	2		1		0
Minor Polarizer Pricked	and glass Polarizer hole or protuberance by external force 	Note		Φ is the average diameter of the defect. Distance between two defects > 10mm.						
		* Unobvious			Φ <u><</u>	0.3	0.3	<Φ <u><</u> 0.5	0.	5< Φ
	White Spot	transparant foreign material between	ACC. NO.	3EA	A / 10	00mm ²		1		0
Minor	and Bubble in polarizer	glass and glass or glass and polarizer * Air protuberance between polarizer and glass			Φ is the average diameter of the defect. Distance between two defects > 10mm.					
			Φ	⊕ <u><</u> 0	.10	0.10<⊕ <u><</u>	<u><</u> 0.20	0.20<⊕ <u><</u>	<u>0.25</u>	⊕>0.2
		ACC. NO.	3EA 100m	۸/ ۱m²	2		1		0	
Minor	Segment Defect			W is n	nore	than 1/2 s	segme	ent width		Rejec
			Note	$\Phi = \frac{L + W}{2}$ Distance between two defect is 10mm					m	
			Φ	Ф <u><</u> 0	Φ <u><</u> 0.10 0.10•		<		<u>0.25</u>	⊕>0.2
	Protuberant		W	Glu			2 Seg W <u><</u> 1/2 <0.2 W <u><</u> 0		Seg 2	Ignore
Minor	Segment	$\Phi = (L + W) / 2$	ACC. NO.	3EA 100m	A / 1m ²	2		1		0
			1. Seg	ment		-				
			E	3	B <u><</u>	<u><</u> 0.4mm	0.4 <e< td=""><td>3<u><</u>1.0mm</td><td>B>1</td><td>l.0mm</td></e<>	3 <u><</u> 1.0mm	B>1	l.0mm
Miner	Assembly		B-	A	B-	A<1/2B	B-	A<0.2	B-A	<0.25
Minor	Mis-alignment					Acc	Acceptable Acceptable			
				Matrix						D :
				rmatior				ما انماد ال	:+h	Rejec
Minor	Stain on LCD Panel Surface		ora	similar	one		ise, ji	d lightly w udged acc /hite Spot"		

9. RELIABILITY

	Condition	Criterion
High Temperature Operating	70℃, 96Hrs	No defect in cosmetic and operational functi on allowable. Total current Consumption should be below doub le of initial value.
Low Temperature Operating	-20℃, 96Hrs	
High Humidity	40℃, 90%RH, 96Hrs	
High Temperature Storage	80℃, 96Hrs	
Low Temperature Storage	-30℃, 96Hrs	
6 Vibration	Random wave	
	10 ~ 100Hz	
	Acceleration: 2g	
	2 Hrs per direction(X,Y,Z)	
7 Thermal Shock	-20℃ to 25℃ to 70℃	
	(60Min) (5Min) (60Min)	
	16Cycles	
8 ESD Testing	Contract Discharge Voltage: +1 ~ 4kV and –1 ~ –4kV	There will be discharged ten times at every discharging voltage cycle. The voltage gap is 1kV.
	Air Discharge Voltage: +1 ~ 6kV and –1 ~ -6kV	
	Low Temperature Operating High Humidity High Temperature Storage Low Temperature Storage Vibration	Low Temperature Operating-20°C, 96HrsHigh Humidity40°C, 90%RH, 96HrsHigh Temperature Storage80°C, 96HrsLow Temperature Storage-30°C, 96HrsLow Temperature Storage-30°C, 96HrsVibrationRandom wave10 ~ 100HzAcceleration: 2g2 Hrs per direction(X,Y,Z)Thermal Shock-20°C to 25°C to 70°CESD TestingContract Discharge Voltage: +1 ~ 4kV and -1 ~ -4kVAir Discharge Voltage:

Note: 1) Above conditions are suitable for our company standard products.

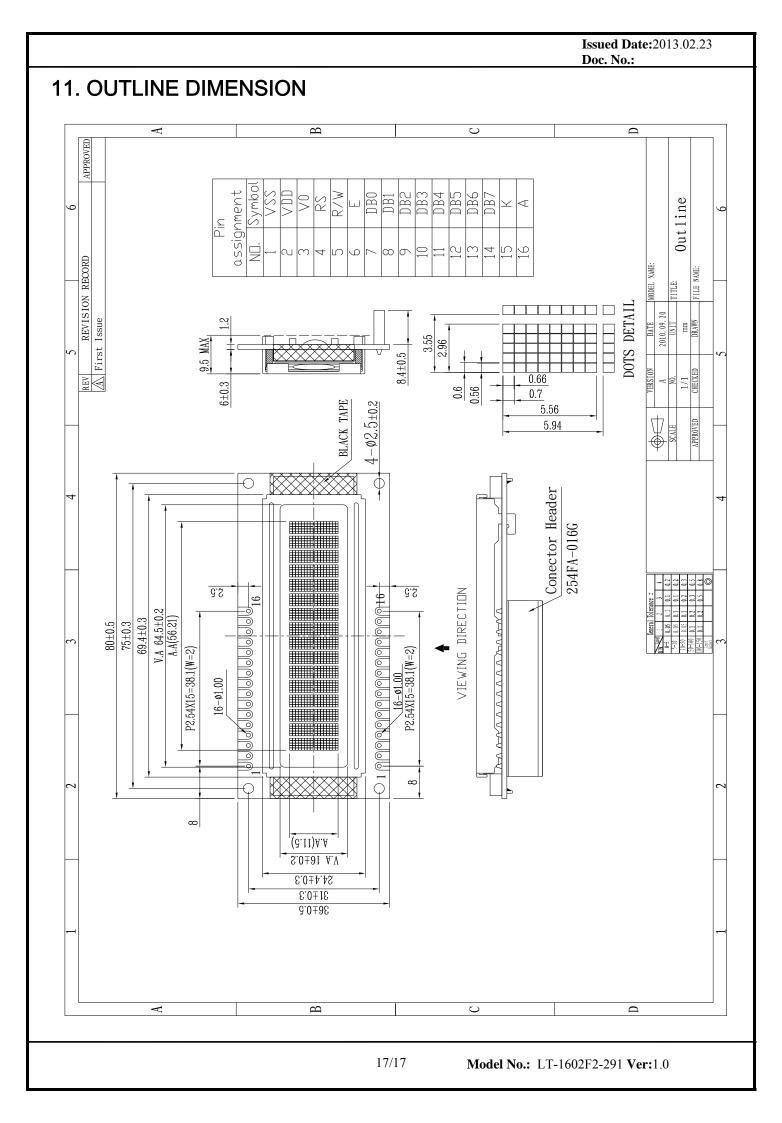
2) For restrict products, the test conditions listed as above must be revised.

10. HANDLING PRECAUTION

(1) Mounting Method

The panel of the LCD Module consists of two thin glass plates with polarizers

which easily get damaged since the Module is fixed by utilizing fitting holes in the printed circuit board. Extreme care should be taken when handling the LCD Modules.


- (2) Caution of LCD handling & cleaning
 - When cleaning the display surface, use soft cloth with solvent (recommended below) and wipe lightly.
 - Isopropyl alcohol
 - Ethyl alcohol
 - Trichloro trifloro thane

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface. Do not use the following solvent:

- Water
- Ketone
- Aromatics
- (3) Caution against static charge
 - The LCD Module use C-MOS LSI drivers, so we recommend that you connect any unused input terminal to VDD or VSS, do not input any signals before power is turned on. And ground your body, Work/assembly table. And assembly equipment to protect against static electricity.
- (4) Packaging
 - Modules use LCD elements, and must be treated as such. Avoid intense shock and falls from a height.
 - To prevent modules from degradation. Do not operate or store them exposed directly to sunshine or high temperature/humidity.
- (5) Caution for operation
 - It is indispensable to drive LCD's within the specified voltage limit since the higher voltage than the limit shorten LCD life. An electrochemical reaction due to direct current causes LCD deterioration, Avoid the use of direct current drive.
 - Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD's show dark color in them. However those phenomena do not mean malfunction or out of order with LCD's. Which will come back in the specified operating temperature range.
 - If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
 - A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.
 - Usage under the relative condition of 40°C, 50%RH or less is required.

(6) Storage

- In the case of storing for a long period of time (for instance.) For years) for the purpose or replacement use, The following ways are recommended.
 - Storage in a polyethylene bag with sealed so as not to enter fresh air outside in it, And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light is. Keeping temperature in the specified storage temperature range.
- Storing with no touch on polarizer surface by the anything else. (It is recommended to store them as they have been contained in the inner container at the time of delivery)
- (7) Safety
 - It is recommendable to crash damaged or unnecessary LCD into pieces and wash off liquid crystal by using solvents such as acetone and ethanol. Which should be burned up later.
 - When any liquid crystal leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water.

